
Physics Informed Neural Network for 2D Diffusion Equation

Eyob Ghebreiesus∗

Department of Mechanical, Materials and Aerospace Engineering
Illinois Institute of Technologyb, Armour College of Engineeringc

10 W 35th St Chicago, IL 60616

Abstract

This project implements a physics-informed neural network (PINN) for solving the 2D diffusion equation with varying
diffusion coefficients. The Green’s function to the 2D Diffusion equation was solved using inverse Fourier transform first.
The model was then trained on synthetic data generated by the exact solution of the diffusion equation, and its accuracy
was assessed by comparing predicted data with test data using contour plots and normal graphs. In addition, the PINN
model was applied to simulate Brownian motion of a particle in a 2D domain. The results showed that the PINN model
was capable of accurately predicting the solution of the 2D diffusion equation and simulating spatial diffusion problems.
This approach can potentially be extended to more complex systems and can provide a useful tool for modeling physical
phenomena in data science and artificial intelligence.

Keywords: PINNs, PDE, 2D Diffusion, Green’s Functions, Heat Flux, Flow, Tensor, Keras, Data

1 Introduction

The development of Physics-Informed Neural Networks
(PINNs) has recently gained significant attention due to its
potential to solve complex physical problems. Using PINNs
to test the diffusion 2D equation for data visualization in-
volves training a neural network to approximate the solution
while incorporating physical constraints and data, and then
using the trained network to predict the solution and visu-
alize the results. PINNs is a technique that combines deep
learning methods with partial differential equations (PDEs)
to solve inverse problems or to learn the dynamics of physical
systems [1]. In general, a neural network can be defined as
a type of machine learning algorithm inspired by the struc-
ture and function of the human brain. Neural networks can
be used for a wide range of tasks, including classification,
regression, and pattern recognition, and they have been ap-
plied in areas such as computer vision, natural language pro-
cessing, and speech recognition [2]. In order to use PINNs
to test the diffusion 2D equation for datad visualization a
proper set up of the full PDE equation is needed.
The fundamental solution to the 2D-Diffusion equation in

polar coordinates is given by the Green function described
below as:

Θ(⃗r, t) ·
(

1

4πDt

)
· e

−r2

4Dt

L = ∂t −D · ∇2

∗Correspondence Author: eghebreiesus@hawk.iit.edu
bIllinois Tech main page: https://www.iit.edu ©2023
cDepartment of Aerospace Engineering: engineering@iit.eedu
dhttps://github.com/eyobghiday/PINNs-in-Fluid-Mechanics

where:

• Θ is the spatial function of interest in polar (r2) coordi-
nate. It is the concentration or density of the diffusing
species in cartesian (x, y) coordinates and time t

• L is the linear differential operator [3][4].

• D is the diffusivity constant (a.k.a κ) in m2

s .

In PINNs, neural networks are used to approximate the
solutions to PDEs, and the physical knowledge is encoded
in the form of constraints on the network. These constraints
are usually derived from the governing equations of the phys-
ical system being modeled [5], and they ensure that the
neural network satisfies the physics of the system. By us-
ing PINNs, in this project we will combine the strengths of
both neural networks and physics-based modeling to solve
complex problems in using the 2D diffusion equation. The
proposed model will be tested for a successful prediction by
comparing the loss function and results of the plots with the
actual equation. The model should reasonably predict and
asses the given data subject to an acceptable error in the
realm of data science.

2 Method

This methodology involves generating a capable PINN
model for the 2D-Difussion equation using a numerical
method, and tensor flows. To begin, the diffusion equation
is a partial differential equation that describes the spread of
a quantity over time, given its initial distribution. In 2D,
the diffusion equation is derived using the Green’s functions

1

mailto:eghebreiesus@hawk.iit.edu
https://www.iit.edu
https://www.iit.edu
https://github.com/eyobghiday/PINNs-in-Fluid-Mechanics

[6] and linear operator PDE’s. Guaranteed boundary con-
ditions have to be specified in order to solve the diffusion
equation. For this project both the Dirichlet’s and Neu-
mann’s boundary conditions will be utilised [7]. A neural
network architecture is then chosen to approximate the so-
lution to the diffusion equation. The neural network takes in
the input variables (x, y, t) and outputs the predicted value
of u(x, y, t) as an example. The architecture in Figure 1 is
designed based on the complexity of the problem and the
available data. Following this we can use the PINNs tech-
nique to train the neural network. The PINN technique in-
volves minimizing the difference between the predicted and
actual values of the quantity of interest, as well as satisfy-
ing the differential equation and boundary conditions. This
can be done using optimization algorithms such as stochas-
tic gradient descent, sequential or adam [1]. Finally, after
the neural network is trained, we can use it to predict the
distribution of u(x, y, t) function over time. We can then
use data visualization techniques such as contour plots or
surface plots to visualize the predicted distribution.

Input
(xi, ti)

Physics-Informed
Neural Network

Output
(ui)

Loss Function
L

Optimizer

Test Data
(xj , tj)

Training Data

Prediction

Figure 1: PINNs Architecture

During training, the PINN model should satisfy the 2D
Diffusion equations as a constraint, and the generated data
set should be used to compute the loss function. As a re-
sult the performance of the PINN model will be evaluated
in predicting the diffusivity using various metrics, such as
mean absolute error, root mean square error, and or the
correlation coefficient.

2.1 Solution to the 2D Diffusion Equation

The 2D diffusion equation allows us to talk about the
statistical movements of randomly moving particles in two
dimensions. The movement of each individual particle does
not follow the equation, but many identical particles each
obeying the same boundary and initial conditions share
some statistical properties. In this derivation of the dif-
fusion PDE we well use function P instead of U to easily

set apart the derivation function from the function used in
the code section even though they mean the same. In an
ideal world the diffusion function is just the probability dis-
tribution P (x, y, t) which provides the probability of finding
a perfectly average particle in the small vicinity of the point
(x, y) at a given time t. The Brownian motion is a special
case of diffusion 2D where the particles are subject to ran-
dom forces that cause them to move in a random pattern [8].
The movement of particles in both diffusion 2D and Brow-
nian motion is affected by the diffusion coefficient D, which
represents the degree of randomness in the movement of the
particles. The evolution of some systems does follow the
equation outright but as a group they exhibit the smooth,
well-behaved statistical features of the diffusion equation.

Now that with all the relative background knowledge, let’s
start with the 2D diffusion equation in cartesian coordinates
as:

∇2 − 1

D

∂P

∂t
= 0

∂2P

∂2x2
+

∂2P

∂2y2
− 1

D

∂P

∂t
= 0 (1)

Equation (1) is what we’re interested in, but in order to
solve it we will need to define the boundary conditions as
follows:

∂2P

∂x2

∣∣∣∣
x=±−∞

=
∂2P

∂y2

∣∣∣∣
y=±∞

= 0

∂P

∂x

∣∣∣∣
x=±∞

=
∂P

∂y

∣∣∣∣
y=±∞

= 0 (B.C)

Since the function P is a linear partial differential equa-
tion and separable function, we can apply an inverse 2D
Fourier transform to solve the solution. Consider the fol-
lowing integral relations that define the 2D FT in Cartesian
coordinates. We will call the function P̂ the FT of our orig-
inal function P :

P̂ (kx, ky, t) =

‹
s

e−i2π(kx·x+ky·y)P (x, y, t)dxdy

P (x, y, t) =

‹
s

e−i2π(kx·x+ky·y)P̂ (kx, ky, t)dxdy (2)

Notice the symmetry in going forward and backward in
the transform Equation (2). This is because switching be-
tween the normal form of the problem and what we call
Fourier Space, where the problem exists after the FT, are
physically identical. Let’s examine the spatial derivatives of
the diffusion equation, where we consider the second deriva-
tive to be the function of interest. We can integrate these
second derivatives by parts, using u and v as follows:

bˆ

a

udv = uv

∣∣∣∣b
a

−
bˆ

a

vdu

2

if u = e−i2π(kx·x+ky·y) and v =
∂P

∂x

then du =
∂

∂x
e−i2π(kx·x+ky·y) and dv =

∂2P

∂x2
dx

Using the substitution of integration by parts we can set up the whole integral as follows.

∞̂

-∞

∞̂

-∞

e−i2π(kx·x+ky·y) ∂
2P

∂x2
dxdy = e−i2π(kx·x+ky·y) ∂P

∂x

∣∣∣∣∞
−∞(x,y)

−
∞̂

-∞

∞̂

-∞

∂

∂x
e−i2π(kx·x+ky·y) · ∂P

∂x
dxdy

= e−i2π(kx·x+ky·y) ∂P

∂x

∣∣∣∣∞
−∞(x,y)

+ i2πkx

∞̂

-∞

∞̂

-∞

e−i2π(kx·x+ky·y) ∂P

∂x

=

�������������

e−i2π(kx·x+ky·y) ∂P

∂x

∣∣∣∣∞
−∞(x,y)

+ i2πkx

∞̂

-∞

∞̂

-∞

e−i2π(kx·x+ky·y) · ∂P
∂x

dxdy

= i2πkx

∞̂

-∞

∞̂

-∞

e−i2π(kx·x+ky·y) ∂P

∂x
(3)

Looking the last term Equation (3), we effectively transferred one derivative off P and put it on the exponential of the
FT, but since the exponential is an explicit function we can just perform the derivative, giving us the constant on the
right most integral of the second line. We can apply similar inverse 1D Fourier transform Equation (3) again to get:

∞̂

-∞

∞̂

-∞

e−i2π(kx·x+ky·y) ∂P

∂x
dxdy = P · e−i2π(kx·x+ky·y)

∣∣∣∣∞
−∞(x,y)

−
∞̂

-∞

∞̂

-∞

∂

∂x
e−i2π(kx·x+ky·y) · P · dxdy

=

������������

P · e−i2π(kx·x+ky·y)
∣∣∣∣∞
−∞(x,y)

+ i2πkx

∞̂

-∞

∞̂

-∞

P · e−i2π(kx·x+ky·y)dxdy

= i2πkx

∞̂

-∞

∞̂

-∞

e−i2π(kx·x+ky·y)dxdy (4)

Equating all the L.H.S with the R.H.S Equation (4) we get:

∞̂

-∞

∞̂

-∞

e−i2π(kx·x+ky·y) ∂
2P

∂x2
dxdy = (i2πkx)

2

∞̂

-∞

∞̂

-∞

e−i2π(kx·x+ky·y)dxdy

∞̂

-∞

∞̂

-∞

e−i2π(kx·x+ky·y) ∂
2P

∂x2
dxdy = (i2πkx)

2P̂ (5)

Since we took the spatial FT (i.e. dealing with x and y), keep in mind, the derivative in time does not change under a
FT [9]. Henceforth we can write the 2D Equation (5) as follows, that enable us to use method of separation variables for
an Eigen value problem in resulting Equation (6):

∂n

xn
= (i2πkx)

nP̂

(2π)2P̂ · ((kx)2 + (ky)
2) +

1

D

∂P

∂t
= 0

P̂ = λe−D(2π)2(k2
x+k2

y)·t (6)

3

The constant λ is nothing but the normalization factor that can be used for the conservation of linear momentum [8].
Therefore our original function p is then given by:

P = λ

∞̂

-∞

∞̂

-∞

e−D(2π)2(k2
x+k2

y)t · e−i2π(kx·x+ky·y)dkxdky (7)

We can further compute Equation (7) by method of separation of spatial variable as:

P = λ

∞̂

-∞

ei2πkx·x−D(2πkx)
2tdkx ·

∞̂

-∞

e−i2πky·y−D(2πky)
2tdky

P = λ

∞̂

-∞

ei2πkx·x−D(2πkx)
2tdkx

 ·

∞̂

-∞

e−i2πky·y−D(2πky)
2tdky

 (8)

Solving Equation (8) by separation of integral requires completing the square of the exponent, re-scaling the integration
variable, changing to polar coordinates and then substituting back the Cartesian values. We will look at the integrand
part of each individual section first.

P = λ

∞̂

-∞

e

i2πkx · x−D(2πkx)
2t︸ ︷︷ ︸

1

dkx

·
∞̂

-∞

e

i2πky · y −D(2πky)
2t︸ ︷︷ ︸

2

dky

i2πkx · x−D(2πkx)
2t︸ ︷︷ ︸

completing square for 1

= −4π2Dt

(
kx − ix

2πDt

)2

− x2

4Dt

Let ux = kx − ix

2πDt
then

= −4π2Dtu2
x − x2

4Dt
∞̂

-∞

e

i2πkx · x−D(2πkx)
2t︸ ︷︷ ︸

1

dkx

= e
−x2

4Dt

∞̂

-∞

e4π
2Dt·u2

xdux (9)

Similarly for the second section of the equation we have:

i2πky · y −D(2πky)
2t︸ ︷︷ ︸

completing square for 2

= −4π2Dt

(
ky −

iy

2πDt

)2

− y2

4Dt

Let vx = ky −
iy

2πDt
then

= −4π2Dtv2x − y2

4Dt

∞̂

-∞

e

i2πky · x−D(2πky)
2t︸ ︷︷ ︸

2

dky

= e
−y2

4Dt

∞̂

-∞

e4π
2Dt·v2

xdvx (10)

After dividing the equation in to two sections, we will attempt to solve each one individually beginning with the first
section obtained in Equation (9).

4

Notice, Equation (9) is equivalent to the first integral in

the original expression, up to a constant factor of e−x2/(4Dt)

with a non elemental integral on the integrand [10]. To
solve this equation we will need to use substitution and then
changing to polar coordinates.
Let

v = 2π
√
Dt · ux

then:

∞̂

-∞

e4π
2Dt·u2

xdUx =

∞̂

-∞

e
−v2

4 dv (11)

The integral in Equation (11) can be evaluated using the
standard result and method of re-scaling as:

∞̂

-∞

e−x2/2dx =
√
2π

To see why, we can consider the square of this integral
and evaluate it in polar coordinates:

x = r cos θ

y = r sin θ

x2 + y2 = r2

dxdy = rdrdθ

polar transformation

(ˆ ∞

−∞
e−x2/2dx

)2

=

∞̂

-∞

e−x2/2dx ·
∞̂

-∞

e−y2/2dy

=

∞̂

-∞

∞̂

-∞

e−x2/2 · e−y2/2dxdy

=

∞̂

-∞

∞̂

-∞

e−
x2 + y2

2
dxdy

=

ˆ 2π

0

ˆ ∞

0

e−r2/2 · rdrdθ

= 2π

ˆ ∞

0

e−r2/2rdr

= −2π
[
e−r2/2

]∞
0

=
(√

2π
)2

(12)

Therefore from Equation (12) we have:

∞̂

-∞

e−4π2Dtu2
xdu =

∞̂

-∞

e−v2/4dv

= 2

∞̂

0

e−v2/4dv

= 2
√
π

Substituting v from Equation (11) back to in Equation

(9) and multiplying both by e−x2/(4Dt), we obtain:

e−
x2

4Dt

ˆ ∞

−∞
e−4π2Dtu2

du =

√
π

4Dt
e−

x2

4Dt

Now remember this is only for the Left (dkx) section of
Equation (9). We still need to follow the same process for
the Right (dky) section in Equation (10). Following the same
process we obtain Equation (15) as:

e−
y2

4Dt

ˆ ∞

−∞
e−4π2Dtv2

dv =

√
π

4Dt
e−

y2

4Dt (15)

Finally putting all equations together and multiplying the
two sections in Equation (8) we have:

P (x, y, t) = λ
e

−(r2)
4Dt

4πD · t

P (x, y, t) = λ
e

−(x2+y2)
4D·t

4πDt
(16)

One last step is to figure out what λ exactly is in Equation
(16). For this sample of project the normalization constant
λ is just the sum unity function that represents the total
sum of the diffusive particles across the 2D surface in the
Gaussian distribution. So on larger scales the trainable de-
grees of freedom behave as Gaussian random variables and
on somewhat smaller scales the dynamics is frustrated from
the simultaneous maximization of entropy of non-trainable
variables and minimization of entropy of trainable variables
[2]. These results have some interesting implications for ma-
chine learning and physics. So the constant essentially tells
us how many non-interacting particles we have in the system
(we are considering just one representative particle). Thus,
if we apply the boundary condition from −∞ to +∞, the
total sum of the function P (x, y, t) adds up to 1. Imposing
this condition leads us to Equation (17):

λ =

∞̂

-∞

∞̂

-∞

P (x, y, t)dxdy = 1 (17)

There for, if λ = 1 the entirety of the 2D diffusion equation
results to Equation (18):

P (x, y, t) =
e

−(x2+y2)
4D·t

4πDt
(18)

A detailed complete PDE derivation of the solution to the
diffusion 2D problem can be found here [11].

2.2 Code Setup

The code for this project tries to demonstrate how to use a
neural network in order to solve thee diffusion equation. The

5

main diffusion equation as shown in Equation (18) is defined
in the code by the function ”diffusion equation”, which takes
in the position, time, and diffusion coefficient as inputs and
returns the value of the equation at that point as seen in the
code below. Here the λ constant is set to 1 and the cartesian
form of the function provided in Equation (17) is utilised.
The domain and boundary conditions for the problem are
defined by creating a grid of x and t values using the NumPy
meshgrid function. The model is built using the Keras Se-
quential API and consists of three fully connected layers,
with the output layer having a linear activation function.
The model is trained using mean squared error loss and the
RMSprop optimizer. Finally, the model is used to predict
the diffusion equation for each value of D, and the results
are plotted using the Matplotlib library. Full codes to the
project can be found on github [12].

This is the main Diffusion equation

def diffusion_equation(x, t, D):

return 1 / (4 * np.pi * D * t) *

np.exp(-np.linalg.norm(x) ** 2 / (4*D*t))

Applying boundary conditions

x = np.linspace(-1, 1, 50)

t = np.linspace(0.01, 1, 20)

X, T = np.meshgrid(x, t)

X_flat = X.flatten()

T_flat = T.flatten()

D_values = [0.1, 0.2, 0.3, 0.4]

N = X_flat.shape[0]

Based on the code provided above, one can observe that
the model is trained to predict the values of the diffusion
equation at different points in space and time, for a range
of diffusion coefficients. The training process involved min-
imizing the difference between the predicted values and the
actual values of the diffusion equation using mean squared
error loss.

After training, the model is used to predict the values of
the diffusion equation for each value of the diffusion coeffi-
cient in the range of D values. The predicted values are then
plotted using contour plots, with the x-axis representing po-
sition, the y-axis representing time, and the color indicating
the value of the diffusion equation.

As stated in the methods section, the homogeneous Neu-
mann’s boundary conditions are assumed (refer to the
(B.C)). These boundary conditions state that the normal
derivative of the solution at the boundary is zero. In this
code, the boundaries of the domain are implicitly assumed
to be reflective, which means that the diffusion equation at
the boundaries is equal to zero. This assumption is neces-
sary to avoid numerical errors due to the finite size of the
domain.

3 Results

3.1 Varying Diffusion Coefficients

For the first set up, the neural network is defined using
the Keras API, with an input layer of 2 neurons (correspond-
ing to position and time), two hidden layers of 50 neurons
each, and a linear output layer. The model is compiled with
the mean squared error loss function and the RMSprop op-
timizer with a learning rate of 0.001. The model is then
trained for 200 epochs on the shuffled training data, with a
batch size of 256 and a validation split of 0.2. The training
loss and validation loss are plotted as a function of the num-
ber of epochs. It showed good prediction with minimum loss
function shown in Figure (2). This was then followed by a
contour plot immediately to test the model.

Figure 2: Model training and loss, based on the number of
epochs = 200 and batch size = 256. It can be observed that
there’s nearly no loss of data after the 20th epoch

.

The four contour plots in Figure (3) show the predicted
solution of the diffusion equation for different values of co-
efficients D ranging 0.1, 0.2, 0.3 and 0.4. This is done by
evaluating the trained neural network on the entire domain
and plotting the results. From the contour plots we can
arrive at the conclusion that the predicted values of the dif-
fusion equation are consistent with the expected behavior
of diffusion. For example, at early times, the diffusion is
localized around the initial position, while at later times, it
spreads out and becomes more diffuse. We also see that the
diffusion is slower for lower values of the diffusion coefficient,
which is consistent with our understanding of diffusion.

6

Figure 3: Prediction values for four D1 = 0.1, D2 = 0.2, D3 =
0.3, and D4 = 0.4 coefficients

3.2 Comparing Diffusion Across a Plate

Another section of the code simulates the diffusion of heat
through a two-dimensional square plate of size 10 mm x 10
mm with thermal diffusivity of water. The set up is sim-
ilar except diffusion of heat is governed by the heat equa-
tion, which describes how temperature changes over time
in a given domain. The heat equation involves the second
derivative of temperature with respect to both space and
time. Thus, the plate has a circular region in the center
with a high temperature and the rest of the plate is at a low
temperature. Two graphs are generated using two different
methods. The first section of the code (see Figure 4) uses
the forward-difference method in time and central-difference
method in space to numerically solve the heat diffusion equa-
tion. The boundary conditions are set as cold on the bottom
and sides and hot on top. The code outputs four figures at
different timesteps that show the temperature distribution
in the plate.

The color scheme used in the maps represents tempera-
ture, with blue indicating the lowest temperature (273.15
K) and red indicating the highest temperature (373.15 K).
The color scale is normalized to the initial and final tem-
peratures of the plate, which are set to 273.15 K and 373.15
K, respectively. The temperature distribution on the plate
can be observed by looking at the color distribution on the
thermal maps.

Figure (5) on the other hand was generated by solving the
heat diffusion equation using the Crank-Nicolson method
to calculate the next timestep of the temperature distribu-
tion. The temperature distribution is initialized with the

initial temperature and then evolved in time with the spec-
ified boundary conditions until a final time as adapted from
Arocha [13]. The temperature distribution at specific time
intervals is saved and plotted the matplotlib library.

Figure 4: Diffusion rate of water using forward-difference
method in time and central-difference method in space. Normal-
ized color scale to the initial and final temperatures of the plate,
which are set to 273.15 K and 373.15 K, respectively based on
the boundary conditions.

Figure 5: Diffusion rate of water using Crank-Nicolson method,
adapted from Arocha, 2018 [13] for comparison. The temperature
distribution is initialized first and then evolved in continuous
time with the specified boundary conditions until a certain value
of time vector.

Compared to the previous model, this one appears to be
more specific to a particular physical system (heat diffu-

7

sion in a plate of water), whereas the previous model was
a general machine learning model that could be applied to
various problems. Additionally, this model uses numerical
methods to solve the differential equations governing the
system, whereas the previous model did not explicitly solve
differential equations. Both models have their own strengths
and weaknesses and are applicable in different contexts.

3.3 Using Finite Difference Method

In Figure (6) the code numerically solves a 2D diffusion
equation with given boundary and initial conditions using
the finite difference method. The final solution, represented
by the array U , is then plotted using a heatmap with the
matplotlib library. The resulting plot shows how the initial
concentration profile evolves over time due to diffusion, with
the red and blue colors representing high and low concen-
trations, respectively.

Figure 6: D = 0.1 and T=0.001

This brief python code simulates the diffusion of a sub-
stance in a 2D domain. It defines the domain size and grid
resolution, the diffusion coefficient, time step, and bound-
ary conditions. It then creates the grid and initializes the
solution array with the initial condition and boundary con-
ditions. The code then iteratively computes the diffusion
for each time step using a finite difference method and plots
the final solution as shown above.

3.4 Heat Flux and Temperature using Dif-
fusion PiNN Model

This section solves the two-dimensional diffusion equation
using the PINN model provided in the code. The model is
trained to predict the temperature distribution in the do-

main, given the diffusion coefficient and boundary condi-
tions. The diffusion coefficient is defined as a function of the
position, and four different values are used for comparison.
The PINN model is defined with several dense layers and the
loss function is defined as the mean square error between the
predicted and actual temperature distributions. The model
is trained using the RMSprop optimizer and the training
data is generated by concatenating the x and y coordinates.
The x and yaxes represent the spatial coordinates within
the domain, and the colorbar on the right side of the plot
indicates the temperature scale. Finally, the temperature
distribution is plotted using for each diffusion coefficient.

Figure 7: Heat Flux as the gradient of the temperature distri-
bution. A positive value indicates heat flowing in the positive +x
or +y direction, while a negative value indicates heat flowing in
the negative −x or −y direction

The heat flux plot (Figure (7)) shows the rate of heat
transfer per unit area in the system. In this case, the heat
flux is calculated as the gradient of the temperature distri-
bution. Positive values of the heat flux indicate heat flowing
in the positive x or y direction, while negative values indi-
cate heat flowing in the negative x or y direction. The heat
flux plot can provide additional insights into the behavior of
the system, such as identifying regions of high or low heat
transfer and the direction of heat flow.

In a different section of the code, the Dirichlet bound-
ary condition [6] was used was; where the temperature is
specified on the boundaries of the domain. Specifically, the
temperature is set to zero on the top, bottom, left, and right
boundaries of the square domain. Figure (8) shows the tem-
perature distribution across the various x and y values in the
plate. The color of the plot represents the temperature dis-
tribution, where red corresponds to high temperatures and
blue corresponds to low temperatures. And finally, the heat

8

Figure 8: Temperature distribution, across the various x and y
values in the plate. Red corresponds to high temperatures while
blue corresponds to values at low temperatures

map plot in Figure (9) shows the circular cross-sectional
temperature profile at time = 1 second, providing a color
heat map of the similar scale.

Figure 9: Heat map for a circular cross-section of temperature
Profile at T ime = 1 seconds

4 Discussions

Overall, the results suggest that the neural network is ca-
pable of accurately predicting the behavior of the diffusion
equation for a range of diffusion coefficients, which could
have applications in fields such as physics, chemistry, and
engineering. However, it should be noted that the quality of
the results may depend on factors such as the complexity of
the system being modeled, the quality of the training data,
and the architecture and hyperparameters of the neural net-
work.

The predicted temperature distribution plots (seen in Fig-
ures 7, 8, and 9) show that the PINN model is able to ac-
curately predict the temperature distribution for different
values of the diffusion coefficient. The plots also indicate
that the temperature distribution is symmetric along the x
and y axes. The heat flux plot in figure (7), shows the flux
of heat through the boundaries of the system. The plot in-
dicates that there is a high heat flux at the corners of the
system, which is expected due to the non-uniform diffusion
coefficient.

Additionally, the contour plot (Figure 8) of the temper-
ature distribution provides a more detailed visualization of
the boundaries and gradients of the system. The contour
plot shows that the temperature gradient is highest at the
corners of the system, which again is expected due to the
non-uniform diffusion coefficient.

Thus, all the plots and outputs suggest that the PINN
model is able to accurately predict the temperature distri-
bution and behavior of the system as well. Guaranteed, a
further analysis and validation would be necessary to fully
assess the performance of the model. Other techniques can
also be used to determine the optimal parameters of a neural
network using an iterative optimization. Such technique is
called backpropagation [6]. The popular algorithm used for
backpropagation is stochastic gradient descent, which is a
stochastic version of the gradient descent algorithm. An im-
portant aspect of this procedure is the efficient computation
of the gradient of the loss function using automatic differen-
tiation. Another technique is also convolutional neural net-
works (CNNs). They are a type of deep neural network used
for image and video recognition tasks. They use learnable
filters to convolve over input data and extract relevant fea-
tures. The architecture of a CNN typically includes convolu-
tional, pooling, and fully connected layers [14]. CNNs have
achieved state-of-the-art performance in image and video
recognition tasks, and have also been used in other fields,
such as natural language processing and speech recognition.

Some limitations of using the PINNs model include the
need for a large amount of data to train the model, as well
as the sensitivity of the model to the choice of hyperpa-
rameters such as the number of layers and neurons in each
layer. In addition, the use of the neural network may lead to
overfitting, which can result in poor generalization to new
data [5]. The use of Green’s functions in Physics-Informed
Neural Networks (PINNs) has several limitations. One of
the main limitations is that the analytical expression for

9

the Green’s function may not be available for more complex
problems. In such cases, numerical or approximate methods
may be required to obtain the Green’s function, which can
be time-consuming and may result in inaccuracies. Another
limitation is that the use of Green’s functions assumes that
the underlying physics of the problem is linear and time-
invariant [3]. However, many real-world problems involve
non-linear and time-varying physics, which may not be ac-
curately captured by Green’s functions.
Furthermore, the PINNs model assumes that the under-

lying physics is continuous and differentiable, which may
not be the case in all scenarios. The implementation of this
approach requires knowledge of neural networks, particu-
larly Physics-Informed Neural Networks, and their training.
The PiNN model should be trained with the same bound-
ary conditions and initial conditions as the original code.
It is essential to select an appropriate architecture for the
neural network and perform hyperparameter tuning to op-
timize the model’s performance. Finally, the training of the
PINNs model can be computationally expensive, especially
for high-dimensional problems, which may limit its practi-
cality in certain applications.

5 Conclusion

The application of Physics informed neural network pro-
vides a powerful tool for determining the solution of the
2D diffusion equation. In this study, a PINN model is pre-
sented, which is a type of neural network capable of solv-
ing partial differential equations (PDEs) with high accuracy,
using both supervised and unsupervised learning. The full
2D diffusion partial differential equation is solved using the
model, which is followed by a discussion of the training loss
function, a measure of how well the model can approximate
the solution to the PDE. The model considered two different
diffusion coefficients, and a comparison between the trained
and predicted data with test data is carried out using con-
tour plots and normal graphs. Despite the challenges en-
countered, the process of building the model highlights the
potential of PINNs to solve complex physical problems, par-
ticularly in fields such as fluid dynamics and data science.
An example code utilizing the PINNs model to solve a

diffusion equation generates a heatmap to visualize the so-
lution. The results indicate that the PINNs model can accu-
rately approximate the solution to the PDE, with low train-
ing loss and high accuracy. Overall, the discussion empha-
sizes the effectiveness of the PINNs model in solving PDEs,
and the significance of the training loss function in measur-
ing the accuracy of the model. The example code provides
a clear demonstration of the power and versatility of this
approach in solving complex problems in physics and engi-
neering. For further details, a detailed derivation of the 2D
equation can be found in the referenced source [11]. Access
to the codes and all necessary documentation accompany-
ing this project for future updates is also made accessible
through github [12].

List of Figures

1 PINNs Architecture 2
2 Model training and loss, based on the number

of epochs = 200 and batch size = 256. It can
be observed that there’s nearly no loss of data
after the 20th epoch 6

3 Prediction values for fourD1 = 0.1,D2 = 0.2,
D3 = 0.3, and D4 = 0.4 coefficients 7

4 Diffusion rate of water using forward-
difference method in time and central-
difference method in space. Normalized color
scale to the initial and final temperatures of
the plate, which are set to 273.15 K and
373.15 K, respectively based on the bound-
ary conditions. 7

5 Diffusion rate of water using Crank-Nicolson
method, adapted from Arocha, 2018 [13] for
comparison. The temperature distribution is
initialized first and then evolved in continu-
ous time with the specified boundary condi-
tions until a certain value of time vector. . . . 7

6 D = 0.1 and T=0.001 8
7 Heat Flux as the gradient of the temperature

distribution. A positive value indicates heat
flowing in the positive +x or +y direction,
while a negative value indicates heat flowing
in the negative −x or −y direction 8

8 Temperature distribution, across the various
x and y values in the plate. Red corresponds
to high temperatures while blue corresponds
to values at low temperatures 9

9 Heat map for a circular cross-section of tem-
perature Profile at Time = 1 seconds 9

References

[1] F. Fernández de la Mata, A. Gijón, M. Molina-Solana,
and J. Gómez-Romero, “Physics-informed neural net-
works for data-driven simulation: Advantages, limita-
tions, and opportunities,” Physica A: Statistical Me-
chanics and its Applications, vol. 610, p. 128 415, 2023,
issn: 03784371. doi: 10.1016/j.physa.2022.128415.
[Online]. Available: https://doi.org/10.1016/j.
physa.2022.128415.

[2] M. I. Katsnelson, V. Vanchurin, and T. Westerhout,
“Emergent scale invariance in neural networks,” Phys-
ica A: Statistical Mechanics and its Applications,
vol. 610, p. 128 401, 2023, issn: 03784371. doi: 10.
1016 / j . physa . 2022 . 128401. [Online]. Available:
https://doi.org/10.1016/j.physa.2022.128401.

[3] D. Skinner, “Green’s functions for PDEs,” pp. 126–
142, [Online]. Available: http://www.damtp.cam.ac.
uk/user/dbs26/1BMethods/GreensPDE.pdf.

10

https://doi.org/10.1016/j.physa.2022.128415
https://doi.org/10.1016/j.physa.2022.128415
https://doi.org/10.1016/j.physa.2022.128415
https://doi.org/10.1016/j.physa.2022.128401
https://doi.org/10.1016/j.physa.2022.128401
https://doi.org/10.1016/j.physa.2022.128401
http://www.damtp.cam.ac.uk/user/dbs26/1BMethods/GreensPDE.pdf
http://www.damtp.cam.ac.uk/user/dbs26/1BMethods/GreensPDE.pdf

[4] S. Nair, Advanced Topics in Applied Mathemat-
ics This. Cambridge University Press, 2011, isbn:
9788527729833. [Online]. Available: www.cambridge.
org/9781107006201.

[5] A. A. Hassan, “Green’s Function for the Heat Equa-
tion,” Fluid Mechanics: Open Access, vol. 04, no. 02,
pp. 2–7, 2017. doi: 10.4172/2476-2296.1000152.

[6] N. Sukumar and A. Srivastava, “Exact imposi-
tion of boundary conditions with distance functions
in physics-informed deep neural networks,” Com-
puter Methods in Applied Mechanics and Engineer-
ing, vol. 389, p. 114 333, 2022, issn: 0045-7825. doi:
https://doi.org/10.1016/j.cma.2021.114333.
[Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0045782521006186.

[7] J. R. Willis, “Polarization approach to the scatter-
ing of elastic waves-I. Scattering by a single inclu-
sion,” Journal of the Mechanics and Physics of Solids,
vol. 28, no. 5-6, pp. 287–305, 1980, issn: 00225096.
doi: 10.1016/0022-5096(80)90021-6.

[8] T. Ursell, “APh Physics Laboratory,” Physics, 2005.
[Online]. Available: http://www.physics.nyu.edu/
grierlab/methods/node11.html.

[9] J. Tang, V. C. Azevedo, G. Cordonnier, and B. So-
lenthaler, “Neural Green’s function for Laplacian sys-
tems,” Computers Graphics, vol. 107, pp. 186–196,
2022, issn: 0097-8493. doi: https : / / doi . org /

10 . 1016 / j . cag . 2022 . 07 . 016. [Online]. Avail-
able: https://www.sciencedirect.com/science/
article/pii/S0097849322001406.

[10] B. Conrad, “Impossibility theorems for elementary
integration,” University of Michigan, 2005. [Online].
Available: https://www.claymath.org/library/
academy/LectureNotes05/Conrad.pdf.

[11] G. Eyob, “Full 2d-difussion equation derivation.pdf,”
MMAE-502, pp. 1–16, 2023. [Online]. Available:
https : / / github . com / eyobghiday / PINNs - in -

Fluid - Mechanics / blob / main / Eyob _ Ghiday _

Difussion_Derivation.pdf.

[12] G. Eyob, Application of PiNNs in 2D Difussion Equa-
tion, 2023. [Online]. Available: https://github.com/
eyobghiday/PINNs-in-Fluid-Mechanics.

[13] M. A. Arocha, “Crank nicolson method,” 2018. [On-
line]. Available: https://matlabgeeks.weebly.com/
uploads / 8 / 0 / 4 / 8 / 8048228 / crank _ nicolson _

method_presentation-v5.pdf.

[14] D. Finol, Y. Lu, V. Mahadevan, and A. Srivastava,
“Deep convolutional neural networks for eigenvalue
problems in mechanics,” International Journal for
Numerical Methods in Engineering, vol. 118, no. 5,
pp. 258–275, 2019. doi: https : / / doi . org / 10 .

1002 / nme . 6012. [Online]. Available: https : / /

onlinelibrary.wiley.com/doi/abs/10.1002/nme.

6012.

11

www.cambridge.org/9781107006201
www.cambridge.org/9781107006201
https://doi.org/10.4172/2476-2296.1000152
https://doi.org/https://doi.org/10.1016/j.cma.2021.114333
https://www.sciencedirect.com/science/article/pii/S0045782521006186
https://www.sciencedirect.com/science/article/pii/S0045782521006186
https://doi.org/10.1016/0022-5096(80)90021-6
http://www.physics.nyu.edu/grierlab/methods/node11.html
http://www.physics.nyu.edu/grierlab/methods/node11.html
https://doi.org/https://doi.org/10.1016/j.cag.2022.07.016
https://doi.org/https://doi.org/10.1016/j.cag.2022.07.016
https://www.sciencedirect.com/science/article/pii/S0097849322001406
https://www.sciencedirect.com/science/article/pii/S0097849322001406
https://www.claymath.org/library/academy/LectureNotes05/Conrad.pdf
https://www.claymath.org/library/academy/LectureNotes05/Conrad.pdf
https://github.com/eyobghiday/PINNs-in-Fluid-Mechanics/blob/main/Eyob_Ghiday_Difussion_Derivation.pdf
https://github.com/eyobghiday/PINNs-in-Fluid-Mechanics/blob/main/Eyob_Ghiday_Difussion_Derivation.pdf
https://github.com/eyobghiday/PINNs-in-Fluid-Mechanics/blob/main/Eyob_Ghiday_Difussion_Derivation.pdf
https://github.com/eyobghiday/PINNs-in-Fluid-Mechanics
https://github.com/eyobghiday/PINNs-in-Fluid-Mechanics
https://matlabgeeks.weebly.com/uploads/8/0/4/8/8048228/crank_nicolson_method_presentation-v5.pdf
https://matlabgeeks.weebly.com/uploads/8/0/4/8/8048228/crank_nicolson_method_presentation-v5.pdf
https://matlabgeeks.weebly.com/uploads/8/0/4/8/8048228/crank_nicolson_method_presentation-v5.pdf
https://doi.org/https://doi.org/10.1002/nme.6012
https://doi.org/https://doi.org/10.1002/nme.6012
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6012
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6012
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6012

	1 Introduction
	2 Method
	2.1 Solution to the 2D Diffusion Equation
	2.2 Code Setup

	3 Results
	3.1 Varying Diffusion Coefficients
	3.2 Comparing Diffusion Across a Plate
	3.3 Using Finite Difference Method
	3.4 Heat Flux and Temperature using Diffusion PiNN Model

	4 Discussions
	5 Conclusion

